-A174 932 ALGEBRAIC GRID GENERATION FOR AN AFTERBODY W

SPAN_ TAPERED FINS(U) PENNSYLVANIA STATE UNIV STATE
COLLEGE APPLIED RESERRCH LAB G H HOFFMAN OCT 86
ARL/PSU/TR-86-087

UNCLASSIFIED




(AN AS RN R ATEN
e

LR PE

ol

D
i
i s

o
3 3

rereg

ere
r

N
(&

.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAU OF STANDARDS 1961 3




Applied ResearchLaboratory
The Pennsylvania State Univerrsity

&,

ALGEBRAIC GRID GENERATION FOR AN AFTERBODY
WITH FINITE SPAN, TAPERED FINS

by

G. H. Hoffman

AD-A174 932

|
3TIC FicE copy

k -:2 for public 10leaze aod sale; he
s distribution 15 gniimited,

TECHNICAL REPORT

) r b
R"{) Lo X

. ; X g —— . . o .- T e - - . g W 2
22 This documext has besa nppmva;‘

D

LA

e - T . T R e PR -
n '\.(\.’k:,’;.'w'\- .. \.‘-'\\. . R ‘.‘\-‘%. RAEE g :.. d .\F AN L NESASE o]
o < o\ 0 n AT & . « - .

L AP0 & ) 0 Ch , “
a" -‘-’\‘-'ﬁ‘s‘(L‘Q”»‘Q '\’,.:.? 4 Q".‘\"-‘\-»u\"..\:‘l‘d!\.. oy L A e




The Pennsylvania State University
Intercollege Research Programs and Facilities
APPLIED RESEARCH LABORATORY
P. 0. Box 30
State College, PA 16804

ALGEBRAIC GRID GENERATION FOR AN AFTERBODY
WITH FINITE SPAN, TAPERED FINS

by

G. H. Hoffman

Technical Report TR 86-007
October 1986

Supported by: Naval Sea Systems Command L. R. Hettche, Director
Lpplied Research Laboratory

Approved for public release; distribution unlimited




Unclassified /) U /’1 / ‘/" \/ (/ﬁ f)l

SECTAITY CLASS 1CAT/ON OF THYS PAGE
REPORT DOCUMENTATION PAGE

1a. RePORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHQRITY 3. DISTRIBUTION/AVAILABIUTY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING QRGANIZATION REFORT NUMBER(S) 5. MONITQRING ORGANIZATION REPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Applied Research Laboratory (if applicable) Naval Sea Systems Command
The Penna. State University ARL Department of the Navv
6c ADORESS {Gty, State, and ZIP Code) 7b. ADDRESS (City, State, and 2IP Code)
P. 0. Box 30 Washington, DC 20362
State College, PA 16804
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If appiicable)
Naval Sea Systems Command NAVSEA
8c. ADDRESS (City, State, and ZIP Coae) 10. SOURCE OF FUNDING NUMBERS
Department h PROGRAM PROJECT TASK WORK UNIT
P n of the \IaV_V ELEMENT NO. NO. NO. ACCESSION NO.

Washington, DC 20362

V1. TITLE (Inciuge Secunty Classufication)

Algebraic Grid Generation for an Afterbody with Finite Span, Tapered Fins

12. PERSONAL AUTHOR(S)
. H. Hoffman

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [1S. PAGE COUNT
Technical FROM TO October 1986 49

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Conninue an reverse if necessary and idenufy by block number)

FIELD % GROUP SUB-GROUP 3-D grid generation, pointed afterbody, fins
I

'9. ABSTRACT (Continue on reverse if necessary and idenufy by biock numoer)

An algebraic technique is presented for the generation of a 3-D grid
about a pointed afterbody with four tapered, finite span fins. The
grid topology is largely determined by a polar type singularity which
passes through the tip parallel to the body centerline. A 3-D grid is
generated by stacking a sequence of 2-D grids on predetermined *blank" ™
surfaces in the fin and tip regions. On each blank surface a grid of
the C-type is computed by a combination of conformal mapping and !
transfinite interpolation. The method is an extension of previous work .
for the generation of a 3-D grid about an afterbody with four constant
chord, infinite span fins. An example grid is presented to illustrate
the method and its characteristics are discussed.

20. DISTRIBUTION/AVAILASIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
Cduncrassireountates O saMme as rer. (S one yseas nclassified
22a. NAME OF RESFONSIBLE :NDIVIDUAL 225. TELEPHONE (inctuge Area Coge) | 22¢ OFFICE SYMBOL

00 FORM 1473, 3anaR 83 APR eqition May be used untl exnausted. SECURITY_CLASSIFICATION OF THIS PAGE
All other edruons are obsolete. Unclassified

AR .“'.‘.‘-I» i '1:',‘:'.' v.'-."_..":‘.:-‘.-‘_ e e _.‘-_., EREAE ."'.-._.‘.
A e e e h WRESGOWR I Wy W N S S T N TP U U NI PR I,V TN P




Abstract: An algebraic technique is presented for the generation of
a 3-D grid ahout a pointed afterbody with four tapered, finite span fins.
The grid topology is largely determined by a polar type singularity which
passes through the tip parallel to the body centerline. A 3-D grid is
generated by stacking a sequence of 2-D grids on predetermined 'blank'
surfaces in the fin and tip regions. On each blank surface a grid of the
C-type is computed by a combination of conformal mapping and transfinite
interpolation. The method is an extension of previous work for the
generation of a 3-D grid about an afterbody with four constant chord,
infinite span fins. An example grid is presented to illustrate the

method and its characteristics are discussed.

Acknowledgment: This work was sponsored jointly by ONR Code 432, NSEA
63R-31, and NSEA 55W33 under the auspices of the Accelerated Research

Option on Hull Propulsor Interaction.

Accession For
NTIS GRA&I
DTIC TAB

Unannounced
Justificatlo

O

By

Distr&pution/”_
Availability Codes

“Tiavail and/or

R R E RV TR TR VS I




-
Lot

R

-~
I

5
P S

. . -
P oy R

-
y,
"

-2-

TABLE OF CONTENTS

ADStract ....cecceecacateconssnse cresescncans Ceeaes Cetsreevans P |

Acknowledgment ......... Cetseeeseseanenan it sean cenaes Ceeeeaee .1

Nomenclature ............ ceeeenn eeretaaaes Ceetareeriaesens veeseeen . 3
List of Figures .............. Ceressecana Cetsssesesessteaas cereane .. 5
List of Tables «cvvveennecicrsesaencnnns ertesieaanas cicessesasaens .. b
1. Introduction ...ceveveenecencccnscnanns e aaaan ceenen ceens 1
2. Analysis .iciiiiniicaanns Cecetcastanaos Cetecinsatianans ... 9

2.1 Geometry of Computational Domainm .....eeevecencressneannanns 9

2.2 Overall Approach .......ccnene. tet st enneenaas veeess.10

2.3 Fin Region ........

Tubular Surfaces

Grid on Tubular Surfaces ........e000 tevececcenacteacanannn 14

2.4 Tip Region .....

Curved Radial Surfaces
Grid on Radial Surfaces .....ecevveneans e

3. Results and Discussion

References

Figures

-\--'&W’-
'&l

1.\*;“1‘;&6;1{2)-..1,," : *-!.:rif RN

e 0 s s 000




;]
IB1
™

roc

X,¥,2

-3-

NOMENCLATURE

airfoil chord length
root chord - see Fig. 3
tip chord - see Fig. 3
length of afterbody

distance from fin leading edge to initial value surface -
see Fig. 4

distance from fin leading edge to initial value surface
on centerline - see Fig. 3

distance from tail to outflow surface

distance inside airfoil from leading edge to singularity
of unwrapping transformation

distance from trailing edge of fin to tail of afterbody -
see Fig. 3

afterbody radius

initial afterbody radius

radius of tubular grid surface
outer cylinder radius - see Fig. 3
tip radius - see Fig. 3
cylindrical coordinates

Cartesian coordinates

distance from root leading edge to generator line
origin - see Fig. 4

hinge plane coordinates - see Eq. (12)
ordinate of fin-tubular surface intersection - see Fig. 5
fin airfoil thickness - see Fig. S

normalized coordinates used in transfinite interpolation




—4-
) Ay parameter in one-dimensional stretching function
4 n running arc length of radial curve

%o turning angle at point O - see Fig. 9

half angle at tail of afterbody

@
]

- -
WA RS

airfoil thickness, fraction of chord length

e
R
A

4 normalized polar variable in azimuthal plane - see Eq. (26)

S

All other quantities are defined in the text.
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}4 1. INTRODUCTION

g

'Qs Algebraic methods have become firmly established over the past

E} ‘decade as an effective means of producing grids about complex

;ﬁ three-dimensional (3-D) geometries. Truly 3-D approaches of this type
" all involve some form of interpolation to determine a ;rid on the

;E interior of a given domain which may or may not be divided into simpler
.g sub-domains. Eriksson [11 has generated a single-block nonorthogonal 3-D

grid using transfinite interpolation where geometric data are specified

i? only on the boundaries. Since no internal surfaces are specified, grid
v

i: quality is controlled, especially near a surface, by incorporating

" out-of-surface derivatives. Smith et. al. [2] simplify the 3-D grid

‘? generation process by using the building block concept where several

é adjoining or partially overlapping physical grids map to a computational
. cube. On the interior of each building block transfinite interpolation
:? is used to generate the grid. Their treatment extends only to the wing
;g tips which limits its usefulness. Multi-surface interpolation methods
i have been highly developed by Eiseman {3]. 1In this technique

::: intermediate control surfaces (not coordinate surfaces) are introduced
EE between bounding surfaces in order to provide a high degree of control
- over mesh properties near boundaries.

;b The second category of algebraic techniques involves stacking

;: methods, i.e., the generation of a 3-D grid by a sequence of 2-D
- operations. In this procedure a set of surfaces is determined by some
'ie form of mapping and then a grid is generated on each surface in such a

way as to maintain smoothness across surfaces. This approach works well

when the geometry is simple in one of the three spatial dimensions. The
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efforts of Caughey and co-workers [4,5] are representative in this area.

They develop a boundary-conforming coordinate system by a sequence of

conformal and shearing transformations to yield a nearly orthogonal

computational domain. The grid is then generated by simple linear
interpolation. This technique has seen considerable application in
transonic flow calculations over fighter aircraft configurations.
Conformal mapping in conjunction with stacking has also been exploited by
Halsey [6] to generate grids about 3-D nacelles with and without cther
aircraft components in close proximity.

One of the advantages of the stacking approach over its 3-D
interpolation counterpart is that appropriate conformal mapping can
be used to eliminate corners at boundaries. Such a technique was
used by Hoffman [7] for a 3-D stacked grid about an afterbody of
circular cross-section with four constant chord fins. Hoffman's
method consists of applying a hinge point transformation to the
entire boundary in the unwrapping process for a given grid surface.

In this report the method of Ref. 7 is extended to the case of
tapered, finite span fins. The type of afterbody is the same as in
Ref. 7, namely, one of circular cross-section that closes at the tail
point. Gridless surfaces are first determined free of corner
singularities and then a grid is generated on each surface by a sequence
of conformal transformations in conjunction with transfinite
interpolation. The topology of this cenfigurat::n "eing mare complex
than that of Ref. 7 requires the domain to be dividea irto two regions -
above and below the tip of the fin. The nature of the grid in the region

between the body and tip dictates the introduction of a singularity of
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the polar type at the tip. This singularity forms the basis of the

coordinate system for the grid outside the tip. Such singularities are a

SRR

necessary occurrence in 3-D grids although they are not restricted to the

polar type. For a discussion of this feature of 3-D grids, see Ref. 1.

2. ANALYSIS

2.1 Geometry of Computational Domain }

The geometry for which a surface fitted grid is to be generated is !

as follows:

(1) The afterbody is of circular cross-section and has a smooth but
otherwise arbitrary meridian profile that closes at the tail
point.

(2) Four identical finite span fins are mounted on the afterbody at
90 degree intervals with their chord planes passing through the
afterbody centerline. The leading and trailing edges are
straight with only the leading edge having taper. The tip is
formed by revolving the airfoil at the end of the fin about the
tip axis.

(3) The computational domain consists of the region interior to an
outer cylinder of radius rpg and exterior to the afterbody,
bounded upstream and downstream by planes normal to the
afterbody centerline (the initial value and outflow planes).

A schematic of the body-fin geometry and computational domain is

shown in Fig. 1, a head-on view showing the coordinate system in the
azimuthal plane appears in Fig. 2 and a meridian plane view of the

configuration showing parameters defining the geometry appears in Fig. 3.
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% Since the fins are identical and equally spaced, there are four planes of
? symmetry and hence, only the azimuthal sector - w/4 < 8 < 0 needs to be

considered in generating the grid and in the flowfield computation.

55 2.2 Overall Approach

ﬂ: The grid generation process is divided into two parts. The first
Y is for the fin (or inner) region which lies within the tip cylinder,

£ while the second is for the tip (cr outer) region which lies between

3 the tip cylinder and the outer cylinder. The method used in the inner
region is a direct extension of that in Ref. 7 for a constant chord fin.
"Blank'" axisymmetric surfaces (with no grid) are first created which vary
; smoothly in the radial direction from the afterbody to the tip cylinder.
On each of these surfaces a C-grid about the fin is then determined by
2-D means with controls to maintain grid smoothness in the radial
direction. In the outer region a coordinate system with a polar
singularity is used to gain maximum grid resolution in the vicinity of

7 the tip. This type of singularity is also dictated by the nature of the
- grid in the fin region. The polar axis is taken to pass through the tip

N centerline and is therefore a generator of the tip cylinder. Blank grid

-1

surfaces (curved radial surfaces) are created which emanate from
the polar singularity and which have the property of being invariant

with respect to translation along the polar axis. A C-grid around the

-

-

: tip is then determined by 2-D means on each curved radial surface. The
W

! grids in the outer and inner regions are of course required to be the
'j same at their common surface, the tip cylinder.
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2.3 Fin Region

Tubular Surfaces

The first step in the grid generation process is the
determination of a set of blank (gridless) surfaces, also called
"tubular' surfaces, between the body and tip cylinder. These
surfaces are generated by computing a set of curves in the meridian
plane using the method of Ref. 7 and then revolving them about the
centerline. Once the intersection of a given surface with the fin is
known, the surface is '"unwrapped” in terms of x and 8 coordinates by
ignoring the radial variation with x of the surface. A C-grid is then
computed in the x-8 plane by using the conformal mapping-transfinite
interpolation procedure described in Ref. 7.

Because of fin taper the computation of the fin-tubular surface
intersection is more complicated than in the constant chord case of Ref.
7. For the tapered case the determination of the intersection (which
yields the distorted airfoil coordinates in the x-6 plane for use in
determining the C-grid) proceeds as follows:

As shown in Fig. 4, the fin is defined to originate on the body
centerline and because of its truncated triangular shape has a "virtual
tip at T', the point where extensions of the leading and trailing edges
intersect. To generate the curve of intersection of the fin with a given
tubular surface, all points defining the intersection are assumed to lie
on generators which are lines passing through T' and intersecting the
centerline at a distance xg from the root leading edge. This artifice

enables the airfoil thickness distribution to be computed only once and

then used for all chord locations because every chord plane distribution
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is geometrically similar. Taking the origin at the leading edge of the

fin root, the equation of a generator line is

R R
= + (—— N 1
X = xp ( o )y (1)
where
r
T
Yor = TT7 (2)
T 1 cT/ R

In applying Eq. (1), the distribution of XR is determined from the unit

chord airfoil distribution xp; by the relation
T%®R*1 (3)

The equation of the tubular surface in the meridian plane may be written

as

r = rM(x) . (4)

Replacing y in Eq. (1) by ry; the difference (x - x;) is computed for
points on the meridian curve. Then using Lagrange cubic

interpolation, the zero (root) of (x - x;) is found from which

- -

x of the intersection and ry; are computed. We note that x must be
used in the root finding process rather than ; because the ; equation
becomes indeterminate at the leading edge.

To determine the appropriate chord length (which enables the airfoil
thickness at the point of intersection to be found) we refer to Fig. 5
which is a sketch of the fin-tubular surface intersection in the

azimuthal plane. Because of the geometric similarity property of all

chord point distributions, we have

X “"“."'4-4
4‘._1-._).1.‘(
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Zp = C zp R (5)

where zp is the airfoil thickness at the intersection point and zp; is
the airfoil thickness for the unit chord distribution. The airfoil

chord, c, is given by

CR= R " @ Iy . (6)

where yy is the projection of ry on the fin plane of symmetry, and

a = ——— . (7)

- 2
Ty =Yy toZp . (8)

By using Eqs. (5) and (6) to eliminate zp and ¢, we can solve Eq. (8)

for yy with the following result:

2 2 2 2 2 2 1/2
- acpzp, + [(aCRZFl) + (1 + azFl) (rM - cq ZFI)]
M 2 .(9)
a + azFl

With yy known, c and zp are computed from Eqs. (6) and (5) respectively.
The quantity dyyp, the distance from the initial value line (IVL) to the
fin leading edge required in the C-grid generation step, is given by

d =d I

IVL (10)

viot 2 Y mE

where dry1g is the IVL - fin leading edge distance on the centerline and

YMLE is given by Eq. (9) applied at the fin leading edge.
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Grid on Tubular Surfaces

Since the procedure used to generate the C-grid on an unwrapped
tubular surface is essentially the same as in Ref. 7, only the outline
of the main steps will be presented. The portions of the original
procedure which have been modified for the present application are
described in detail.

Starting in the x-8 plane a sequence of conformal transformations
unwraps the airfoil, symmetry lines and initial and outflow lines into a
quadrilateral with slowly varying height. Next, a translation and
rotation of coordinates is made about the image of the airfoil trailing

edge and a hinge point transformation applied to eliminate the corner at

the trailing edge. The boundary in the hinge plane is now smooth with a
slowly vary tangent and is thus suitable for producing a grid in its
interior by interpolation. Transfinite interpolation using cubic
blending functions is used for this task producing a smooth grid
orthogonal at all boundaries. The grid in the x-8 plane is then obtained
by reversing the sequence of transformations. Finally, the grid on the
tubular surface is found by determining by Lagrange interpolation the
tubular radius corresponding to the x-coordinate of each grid point in
the x-9 plane.

Spacing of grid points on the boundaries made up of the stagnation
line, airfoil and wake centerline is determined in physical coordinates

by using one-dimensional stretching functions, as described in Ref. 7.

!! Grid points on the outflow line are determined in the hinge plane also in

n".v:

Ei: the manner of Ref. 7. Placement of grid points on the initial value line

"

f:{ and 45 degree symmetry line is presently accomplished by requiring points
n
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on these boundaries in the hinge plane (the north boundary) to be spaced
in the same arc length proportion as points on the south boundary (the
image of the stagnation line, airfoil and wake centerline). The present
method is guaranteed to produce a non-folded grid whereas the older
circular arc method of Ref. 7, which is also applied in the hinge plane,
sometimes produces folding in the vicinity of the stagnation line in the
case of thick airfoils.

The method of locating point K has also been changed. Point K (see
Fig. 6) is the intersection of the grid line emanating from point C (the

intersection of the inflow and 45 degree symmetry lines). In Ref. 7 the

T i,

circular arc method was used to locate point K automatically whereas in
the present application point K is specified in physical coordinates as
part of the input. The new procedure provides more flexibility for the
.; division of grid lines intersecting the airfoil from the initial value

and 45 degree symmetry lines.

2.4 TIP REGION

e = e

Curved Radial Surfaces

The topology of the radial curves emanating from the tip polar axis

- -~

N\ is illustrated in Fig. 7. The constraints that must be satisfied

are that orthogonality exists at intersections with the outer and 45

degree symmetry boundaries (segments A-E and E-D) and that the curve

from O to E bisects the angle at E. These curves, upon translation in

the x direction, create radial surfaces for the grid in the tip region.
The radial curves are generated by a variant of the conformal

mapping-transfinite interpolation procedure used for the grid on

» .‘.f‘-'_-"-_f\._-’ - L . - . et e
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p)

) tubular surfaces in the fin region. With origin at point E, a hinge

Pt

Q point transformatiaon is applied to straighten out segment A-E-D, viz.

. w=2z2> (11)
| where

D

2 z=x+ iy , (12)
', w=u+ iv . (13)
¢

: This transformation guarantees that the angle at point E will be

)

" bisected by the line which intersects it. Applying the transformation to
the entire bounding curve 0-D-E-A-O produces a three-cornered boundary in
the u-v plane, as illustrated in Fig. 8. Transfinite interpolation with
cubic blending functions is then used to create lines emanating from
A point O which are normal to A-E-D. Because the north boundary collapses
to point O with the result that (;E)O = 0 and (¥€n)0 = 0, the transfinite
! interpolation relation, Eq. (26) of Ref. 7, reduces to (using

|

point-of-compass notation and labeling corners as shown in Fig. 8)

T

(&, m) = T (&) E(n) + Ty F(n) + T (£)6(n) + T (£) H(n)

~ S e
] T

+ E(E) [T,(n) - T, E(n) - 2 F(n) - T, G(n) - Fypo H(D))

1 g
N + F(8) [gg(n) - T E(n) - F F(n) - Topp G(n) - Tpo H(D)]
U -+ > >
+6(8) [rpy(n) - rppy E(n) - Teoua (M1
> -> ->
y +H(E) [Fp(n) - Fopp ) - F o0 6(n)) : (14)
>
’
’
2
5 where E, F, G and H are cubic blending functions given by
!
’
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N
' F(u) = u2(3 - 2u)
v,
tj: G(u) = u(l - w)?
it : (15)
s H(u) = ul(u - 1)
‘ Ly
o E(u) = 1 - F(u)
,|: The normalized variables £ and n are defined as follows: On segment
' gm
kL,
A-E-D,
w i = sli/slioral » (16)
;u
and on segment A-O,
::: nj = Szj/sztotal s (17)
'i':
'J".
i where sl; and st are the running arc lengths on A-E-D and 0-A
'Qf respectively, as measured from point A.
o
[~ The arc length on the various boundaries is computed from the chord
.
formula using a dense point distribution to obtain as much accuracy as
T:{: possible. The desired point distribution on A-E-D, which is much less
zi: dense than that used to determine arc length, is computed using uniform
o
Byt
increments in 6 on A-E and uniform increments in x on E-D (see Fig. 7).
A~
{’E The corresponding sl; is then obtained by Lagrange cubic
NG
v interpolation on uj from which £; is computed. The distribution of n
N
’ is arbitrary as it is used only to define the radial curves for
'J} later use. The method presently is use is to specify uniform
2
::: increments in u on A-O, from which corresponding values of v, x and y are
- determined analytically.
g
vﬁ The evaluation of the various derivatives in the transfinite
Y
o
.$: interpolation relation is analogous to that in Ref. 7 with one
>
,FT
.3
-
o
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exception. At point O the turning angle ¢qg of £ = constant lines,
defined in Fig. 9, is a prescribed function of £. Then at point O

the unit tangent vector is given by
ZI(E) = cos ¢0 Zu - sin ¢0 ;v (18)
where gu and ;v are unit tangent vectors in the u and v directions
respectively.
If A-E-D were a segment of a circle and the radial lines from

point 0 were straight, then ¢, and £ would be related by
g

Figure 10 shows a typical set of radial curves generated using the
above relation. In the vicinity of 0-E folding occurs brought on
by the rapidly changing curvature of A-E-D in the hinge plane near point
E which cannot be handled adequately by transfinite interpolation. This
defect can be cured without changing Eq. (19) by following a strategy
devised by Vinokur & Lombard [8], namely, incorporation of an interior
stretching function in £ which produces clustering at point E. We

define:

£E=¢ () , (20)

and then perform transfinite interpolation in (€,n) variables. The

derivatives affected in Eq. (14) are ;5 and r. which now become

En

?_ and r: . The new derivatives are related to the old by

g &n




> > d
rE = rg / dE > (21)
and
e
r =r_ [/ . (22)
- d
En En 2
The interior stretching function devised by Vinokur [9] is as
follows:
- £ .1 _..-1 & _ - ,
£ EE + 2y sinh [(EE 1) sinh (EE Ay)] , (23)
where
_ 1 1+ EE (eAy - 1)
§ =7 In - (24)
2y T ig(1-e V)
E
Then the derivative dE/df, obtained from Eq. (23), is
— sinh (€, ay)
de _ E E o y2 .2 -
ac ——E;rzsr-———-[l + (EE 1)” sinh™(£g ay) 1T . (25)

If the dimensionless slope at the inflection point §g is Sg, i.e.
- &
Sg = a¢ &) -

then Sp is found to be related to Ay by the following implicit equation:

cosh 8y - 1 + I/EE

-2_ _
(Sg b )7 =~y 1. (26)

Rather than specify Sp and solve Eq. (26) for Ay, we take the easier

approach of specifying Ay and solving directly for Sg. By trial and
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error a value of Ay = 8 has been found to produce adequately spaced

radial curves with no folding near point E, as illustrated in Fig. 11.

‘AR of X AL f F S—_—— - . . -

Grid On Radial Surfaces
In the azimuthal plane, a radial curve may be defined in a

discrete sense by the equations:

-

;= (n; ) |
L { = constant, (27)
2y = 2(n) |

where the origin is taken at the polar axis through the tip, as shown in

Fig. 11, and n is the running arc length of the radial curve. A radial

<
[]

surface is obtained, as already mentioned, by translating a radial curve

from the initial value surface to the outflow plane. If flattened out,

i.e., plotted as n versus x, it would appear as sketched in Fig. 12. On

each radial surface a C-grid is generated in the x-n plane by conformal
mapping and transfinite interpolation, the same procedure used for the

surfaces of the fin grid.

Before a C-grid can be generated in the x-n plane, n of the tip
must be determined as a function of x. Since the tip is assumed to

be a half-body of revolution, for a given value of x its radius is

constant. Thus a natural way of determining Ntip is to interpolate

for n given r, the polar radius of each point on the radial curve.

Lagrange cubic interpolation is used for this purpose.

r . . . .
y Knowing np,, of a radial curve, the equivalent polar angle 8., is
]
»
N computed from
2 .
g
- n
max
! 8max r‘ : (28)
- T
g
,
"
»
'I
N
-
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from which the coordinate magnification Fy used in computing the C-grid

is determined from

(29)

The above definition of Fy is dictated by the requirement of grid
compatibility at the tip cylinder for the fin and tip regions. The

magnified coordinates (;,5) are given by:

X Fy(x - dg) + 1n 2, (30)

8 =F 6, (31)

where dg is the location of the singular point in the unwrapping
transformation (see Eq. (10) of Ref. 7) and is just inside the leading

edge of the airfoil. Thus when 8 = 6 ,,, 8 = 7 which is a requirement of
the urwrapping transformation.

Determination of the C-grid on a particular radial surface gives the
x-; coordinates of each nodal point, from which the y-z coordinates of

the grid are determined by Lagrange cubic interpolation of the points

defining the radial curve, Eq. (27).

3. RESULTS AND DISCUSSION

Finite span fin-afterbody grid generation using the present
technique is performed by two computer codes totaling some 4200 FORTRAN
statements. FINGRID generates the grid in the fin region (interior to
the fin cylinder) while TIPGRID generates the grid in the tip region
(between the tip and outer cylinders). Both codes are written in
double precision arithmetic to minimize roundoff error from the many

arithmetical operations required. Calculations are made in terms of

ot A T BTN R
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real variables only. At the present time there is no linkage between
the two codes, i.e., the common grid on the tip cylinder is generated
independently by each code. A User's Manual is incorporated in each
FORTRAN listing by way of comment statements at the beginning.
As in Ref. 7, a NACA symmetric four-digit series airfoil was chosen to
represent the fin section. The equation for this profile is, after
~: slight modification of its original linear term to produce a zero

thickness trailing edge:

L on s

zp = -5t (0.2969 vx - 0.1281x - 0.3516x% + 0.2843x> - 0.1015x*)  (32)

Because interpolation is used liberally on the airfoil in the grid
generation process, an accurate definition of the thickness distribution,
Zp vs. X, is required. For this purpose 101 points are used with
clustering at the leading edge.

As a test problem to exhibit the characteristics of the method, an
analytical afterbody was chosen, the same as in Ref. 7, given by the

expression

rB(t) = rBlF(t) - d. _tan éTG(t) , (33)

BOD

. where F and G are cubic blending functions given by Eq. (15), and

The particular set of afterbody parameters, used in the test example, is

as follows:

Thy = 0.75 , dBOD = 2.5 , tan 8T = 0.50

M L)
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This set produces a full afterbody profile with a tail half-angle of

v
4

i
1

26.6 degrees. Other parameters in the example are given in Table 1.

R T BOD IVLO OB TL o]0

1.3 0.8 2.5 0.3 1.0 0.5 4.0 1.2 0.2

Table 1. Parameters in Example 3-D Geometry.

A meridian plane view of the afterbody-fin geometry for the
example is shown in Fig. 13 along with one intermediate tubular surface.
This figure also contrasts the locus of point K along the fin using the
circular arc method of Ref. 7 and the present method of requiring point K
to lie along a specified fin generator line. The older methed allows
point K to migrate too close to the leading edge as the tip is apprcached
which results in a squeezing of grid lines intersecting the fin from the
initial value surface.

Figures 14 - 16 present different perspective views of the body,
intermediate and tip grid surfaces of the example. Also shown is the
outline of the fin. In this example grid lines are clustered at the fin

leading edge, point K, the fin trailing edge and body tail point. Figure

17 is a view of the grid on the fin symmetry plane, fin surface and body

surface. The intent of this figure is to show the smoothness of the grid

in the stacking direction.
Perspective views in the tip region are presented in Figs. 18-20

showing the grid on the tip cylinder, fin plane of symmetry and outflow

%
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plane. Nine curved radial surfaces were used in the stacking direction

it
gs, (azimuthally). Figure 21 shows a view similar to the previous three
.5
. except the grid has been truncated in the downstream direction at the
A U
Lt
f: surface through point K.
"
_’; The grid on the outflow plane and surface through point K is
Ly
" seen to have a kink at the curve passing through the corner formed by
&
e
- the intersection of the outer cylinder and 45 degree symmetry plane.
o
hY
N This feature is, unfortunately, an integral part of the grid topology.
~ Figure 18, a more nearly head on view, clearly shows the nature of the
‘E stacked grid. The skewness of the grid is seen to increase as the kink
i
1:3 is approached and can be attributed to the use of the same clustering
parameters on each C-grid. By varying certain of these parameters
%}j azimuthally the smoothness in the stacking direction should improve.
-\'
o The procedure in its present form suffers from one other
) shortcoming, namely, that due to the simplified tip geometry (a half body
'\;!
35 of revolution) surface derivatives across the fin-tip juncture are not H
e
o:: smooth. This defect can be corrected by refining the definition of the
"
.“ tip geometry and modifying the C-grid accordingly in the tip region.
".
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Figure 5. Fin-Tubular Surface Intersection, Azimuthal Plane.
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Figure 7. Topology of Polar Grid Curves in Azimuthal Plane.
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Figure 10. Radial Curves in Tip Region Showing Folding Near 0O-~il.
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Nearly Head on View of Fin Grid.

Figure 15.
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Grid.

Figure 16. Close Up View of Fin
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Side View of Tin Grid.

Figure 19.
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